<html>
  <head>
    <meta http-equiv="content-type" content="text/html;
      charset=ISO-8859-1">
  </head>
  <body bgcolor="#FFFFFF" text="#000000">
    <br>
    <div class="moz-forward-container"><br>
      <br>
      -------- <br>
      <br>
      <meta http-equiv="content-type" content="text/html;
        charset=ISO-8859-1">
      Dear All,<br>
      <br>
      This course will start from the following Monday.&nbsp; You might like
      to suggest that some of your advisees take it.&nbsp; Travel is not
      needed, since it is a distance learning course. Thanks.<br>
      <br>
      Best regards,<br>
      <br>
      -John Weng<br>
      BMI 871 Instructor<br>
      <br>
      <meta http-equiv="content-type" content="text/html;
        charset=ISO-8859-1">
      <div class="page-title">
        <h3 align="center">BMI 871: Computational Brain-Mind<br>
        </h3>
        <p align="center"><strong>A </strong>
          <meta http-equiv="content-type" content="text/html;
            charset=ISO-8859-1">
          <strong>Distance Learning Course<br>
          </strong>
          <meta http-equiv="content-type" content="text/html;
            charset=ISO-8859-1">
          August 6 - 24, 2012<br>
          <a moz-do-not-send="true"
            href="http://www.brain-mind-institute.org/bmi-871.html">http://www.brain-mind-institute.org/bmi-871.html</a></p>
        <p align="center">
          <meta http-equiv="content-type" content="text/html;
            charset=ISO-8859-1">
        </p>
        <h4 align="center">Course Description</h4>
        <p>This course introduces computational principles of biological
          brain, which give rise to the various functions of mind. An
          emphasis is on regarding the brain as a highly integrated
          developmental system so that the models and principles are
          applicable to small biological brains (e.g., fruit flies),
          large biological brains (e.g., humans), and artificial ones
          (e.g., machines and robots). The material integrates knowledge
          in computer science, neuroscience, psychology (also cognitive
          science), biology, electrical engineering, physics,
          mathematics, and other related disciplines. The course is
          suited for faculty, senior researchers, postdocs, and graduate
          students in any discipline &#8212; natural sciences, engineering,
          and social sciences &#8212; who are interested in studying how the
          brain-mind works. The subjects include: Computational
          development of biological brains. Machine's symbolic
          representations. Brain's emergent representations and
          architectures. Brain's spatial representations. Brain's
          temporal representations. Perception, cognition, attention
          (bottom-up and top-down), learning, behaviors, abstraction,
          reasoning, decision making. Vision, audition, touch,
          multimodality, and integration. Modulatory system:
          reinforcement, motivation and emotion. The above subjects are
          detailed down to neuronal computation, cutting across levels
          of molecules, synapses, cells, circuits, systems, brains,
          experience, functions, and group intelligence. </p>
        <p>Examples of fundamental discipline questions to be discussed:<br>
        </p>
        <ul>
          <li><strong>Biology</strong>: How do individually autonomous
            cells interact to give rise to animal behaviors?</li>
          <li><strong>Neuroscience</strong>: From an overarching
            perspective, how does the brain self-organize?</li>
          <li><strong>Psychology</strong>: How does an integrated brain
            architecture realize many psychological learning models
            (e.g., classical conditioning and instrumental
            conditioning)?</li>
          <li><strong>Computer Science</strong>: Why is the automata
            theory a special case of the brain's neural network theory?</li>
          <li><strong>Electrical Engineering</strong>: How does a brain
            perform general-purpose nonlinear control, beyond Kalman
            filtering?</li>
          <li><strong>Mathematics</strong>: How does a brain perform
            general-purpose high-dimensional, nonlinear optimization?</li>
          <li><strong>Physics</strong>: How do meanings arise from
            physics?</li>
        </ul>
      </div>
      <pre class="moz-signature" cols="72">-- 
--
Juyang (John) Weng, Professor
Department of Computer Science and Engineering
MSU Cognitive Science Program and MSU Neuroscience Program
3115 Engineering Building
Michigan State University
East Lansing, MI 48824 USA
Tel: 517-353-4388
Fax: 517-432-1061
Email: <a moz-do-not-send="true" class="moz-txt-link-abbreviated" href="mailto:weng@cse.msu.edu">weng@cse.msu.edu</a>
URL: <a moz-do-not-send="true" class="moz-txt-link-freetext" href="http://www.cse.msu.edu/%7Eweng/">http://www.cse.msu.edu/~weng/</a>
----------------------------------------------

</pre>
      <br>
      <br>
    </div>
    <br>
  </body>
</html>