<html>
  <head>
    <meta content="text/html; charset=UTF-8" http-equiv="Content-Type">
  </head>
  <body bgcolor="#FFFFFF" text="#000000">
    <br>
    <meta content="text/html; charset=UTF-8" http-equiv="Content-Type">
    Dear Colleagues:<br>
    <br>
    <meta http-equiv="content-type" content="text/html; charset=UTF-8">
    Thank all those who commented.  Please further give your views and
    suggestions so that we can improve the BMI web in its page: Why-Me?
    <br>
    This is the last email of the 6 emails, one for each discipline. <br>
    <br>
     
    <meta http-equiv="content-type" content="text/html; charset=UTF-8">
    <h4 align="center">I Am a Psychologist</h4>
    <p align="left">In experimental psychology, a vast literature
      already exists about brain-mind behaviors. For example, Ida
      Stockman (Stockman 2010) reviewed rich evidence that movement and
      action are critical for perceptual and cognitive learning. Linda
      Smith and coworkers (Yu et al. 2009) have demonstrated that
      perception-action loops play important roles in children's visual
      learning. Connectionist modeling since the early 1980s (e.g.,
      McClelland et al. 1986, Elman et al. 1997, Shultz 2003) is a quest
      for a deeper causality — the computational causality. The
      brain-anatomy inspired computational model for the brain-mind by
      Weng 2010 seems to predict how the motor areas represent states of
      spatiotemporal context that are necessary for brain representation
      and reasoning. For example, this network model predicted, through
      computer simulations, how the complete transfers in human
      perceptual learning recently reported (see, e.g., Xiao et al.
      2008, Zhang et al. 2010) can occur computationally. Many
      psychologists, including cognitive neuroscientists, talk about
      brain as a symbolic network (e.g., with rigid functional modules)
      but do not see how representations emerge inside the brain. Many
      computational models in psychology use GOFAI (Good Old Fashioned
      AI, e.g., symbolic Bayesian models). Therefore, they want to learn
      biology, neuroscience, computer science (e.g., the automata
      theory, symbolic AI, and the complexity theory), electrical
      engineering (e.g., signal processing and system theory), and
      mathematics (e.g., vectors, probability, statistics, and
      optimization theory). For example, an increasing number of
      psychological departments are changing the composition of their
      faculty toward this direction. </p>
    <h4 align="center">Why Learning Psychology?</h4>
    <p align="left">The field of developmental psychology has
      accumulated much evidence that the brain gradually develops its
      capabilities for perception, cognition, behavior, and motivation.
      Furthermore, psychology has a rich collection of models about
      animal learning, including sensitization, habituation, classical
      conditioning, instrumental conditioning, extinction, blocking,
      homeostasis, cognitive learning, and language acquisition.
      However, the brain learns autonomously, fully autonomous inside
      the brain skull, while displaying capabilities some of which are
      described by these qualitative learning models. Many models in
      pattern recognition, AI and neural networks use either supervised
      learning or unsupervised learning. In the former, class labels are
      provided. In the latter, class labels are not provided that the
      system must form clusters in the sensory space. These two learning
      modes are not exactly what the brain uses. The brain does not need
      a human teacher to provide discrete class labels. The brain does
      not use unsupervised clusters in the sensory space alone. Instead,
      the brain uses its body to be motor-supervised by the physical
      world and uses its own actions to autonomously self-supervise
      (practice). One may say that the machine learning community has
      already reinforcement learning. However, many such reinforcement
      learning models are symbolic, using a rigid time-discount value
      model and not using emergent internal representations. Knowledge
      in psychology enables you to rethink how to overcome your hurdles
      (e.g., problems in providing discrete class labels).</p>
    <br>
    <br>
    <br>
    <pre class="moz-signature" cols="72">-- 
--
Juyang (John) Weng, Professor
Department of Computer Science and Engineering
MSU Cognitive Science Program and MSU Neuroscience Program
3115 Engineering Building
Michigan State University
East Lansing, MI 48824 USA
Tel: 517-353-4388
Fax: 517-432-1061
Email: <a moz-do-not-send="true" class="moz-txt-link-abbreviated" href="mailto:weng@cse.msu.edu">weng@cse.msu.edu</a>
URL: <a moz-do-not-send="true" class="moz-txt-link-freetext" href="http://www.cse.msu.edu/%7Eweng/">http://www.cse.msu.edu/~weng/</a>
----------------------------------------------

</pre>
  </body>
</html>